
AIAA-2003-5623 

 1

ANGULAR RATE ESTIMATION USING AN ARRAY OF  
FIXED AND VIBRATING TRIAXIAL ACCELERATION MEASUREMENTS 

 
Mark Costello† 
 Chad Webb‡ 

 
Department Of Mechanical Engineering 

Oregon State University 
Corvallis, Oregon 97331 

 
 
 

                                                 
† Assistant Professor, Department of Mechanical Engineering, Member AIAA 
‡ Graduate Research Assistant, Department of Mechanical Engineering 
Copyright © 2003 by the American Institute of Aeronautics and Astronautics, Inc.  All rights reserved. 

 
 
 
 

ABSTRACT 
The work reported here describes a method for 

estimating angular velocity and angular acceleration 
of a body using clusters of seven triaxial linear 
acceleration measurements.  Four of the triaxial 
sensors are fixed to the body while three of the 
sensors vibrate at a constant frequency with respect 
to the body.  Unlike other existing solutions to this 
problem, the method described here does not require 
integration and also properly resolves the algebraic 
sign of the angular rates.  After describing the basic 
method, the paper conducts an error analysis to 
identify critical design parameters of this sensor 
concept.  The basic algorithm is shown to work well 
even in the presence of sensor noise, bias and cross 
axis sensitivity.  Practical issues such as the required 
number of sensors, sensor arrangement, data fusion, 
and quantization errors are addressed.      

 
SYMBOLS 

, ,x y zL L L : Components of sensor geometry aligned 
with a coordinate system fixed to a body. 

, ,x y z∆ ∆ ∆ : components of position vector in body 
frame 

, ,x y zn n n : Vibration amplitudes of vibrating sensors 
in component directions on a body. 

, ,x y zω ω ω : Circular Frequency of vibrating sensors 
in component directions on a body. 

, ,φ θ ψ : Euler roll, pitch and yaw angles of the body 
, ,p q r : Components of angular velocity in the body 

reference frame. 
, ,p q r : Components of angular acceleration in the 

body reference frame. 

a br → : Position vector from point a to point b  

/ /,a b a bv a : Velocity , acceleration vector of point a  

with respect to reference frame b . 

/ /,a b a bω α : Angular velocity , angular acceleration 

vector of point a  with respect to reference frame b . 
,j jF V : jth fixed, vibrating sensor 

 
INTRODUCTION 

The introduction of a wide variety of 
microelectromechanical systems (MEMS) into the 
marketplace has opened the door to incorporate small 
and relatively inexpensive sensors into air vehicles in 
new and innovative ways.  A case and point is small 
and medium caliber smart projectiles.  Until recently, 
sensor size, durability, and cost issues have prevented 
active control of gun launched projectiles.  While the 
development of new MEMS sensors is a very active 
area of inquiry with new devices entering the 
marketplace regularly, the most highly developed 
motion sensor for use on smart weapons is the 
accelerometer.  These devices are particularly 
attractive for gun launched projectiles since they are 
rugged and can survive high acceleration levels 
typical at launch. 



AIAA-2003-5623 

 2

A number of investigators have examined the use 
of linear acceleration measurements to compute the 
angular rates and angular accelerations of a body.  
See references 1 through 5 for a survery of 
techniques and applications.  Costello and Jitpraphai 
[6] found that when all acceleration sensors are 
directly mounted on the body, the algebraic sign of 
the angular rate components cannot be uniquely 
determined.  The problem of determining the 
algebraic sign of angular rates can be avoided by 
using acceleration sensors that are fixed to the body 
along with acceleration sensors that vibrate in a 
known manner with respect to the body.  Merhav [7] 
developed a method to estimate body angular rates 
using 3 single axis, fixed and vibrating acceleration 
measurements.  This technique requires integration 
over a single vibration period to compute body 
angular rates.  An important side effect of this 
integration process is the elimination of acceleration 
measurement bias and noise from the estimation 
process. 

The paper described here presents a new concept 
for estimating angular velocity and angular 
acceleration of a body using 4 fixed triaxial 
acceleration measurements and 3 vibrating triaxial 
acceleration measurements.  The technique has the 
advantage of not requiring integration while still 
properly resolving the algebraic sign of the angular 
rates.  The paper begins with a description of the 
proposed method, followed by a parametric trade 
study targeted at unveiling the design parameters of 
this sensor system that affect error propagation. 

 
SYSTEM GEOMETRY 

For convenience, the analysis to follow assumes 
the sensors are arranged in a specific manner.  
Consider Figure 1 that shows a total of 7 triaxial 
acceleration sensors mounted to a rigid body.  The 
four sensors depicted as small cubes ( )0 1 2 3, , ,F F F F  
are fixed to the body.  The other three sensors 
( )1 2 3, ,V V V  depicted as circles oscillate linearly about 
the center of a line from the origin of the sensor 
frame ( )0F  to the respective fixed acceleration 
sensor.  Sensors 1, 2, and 3 for both the fixed and 
vibrating cases lie along the SI , SJ  and SK  axes, 
respectively.  The vibrating sensors are positioned a 
distance xL , yL  and zL  from the origin of the sensor 
reference frame and oscillate at a frequency of 

,x yω ω and zω , with an amplitude of xn , yn  and zn , 
respectively. 
 

ANGULAR RATE ESTIMATION USING 
FIXED AND VIBRATING SINGLE AXIS 

ACCELERATION SENSORS 
The technique developed by Merhav [7] utilizes 

a set of three fixed and three vibrating single axis 
acceleration measurements.  Referring to Figure 1, 
sensors 1 2 3 1 2, , , ,F F F V V and 3V  are employed (sensor 

0F at the origin is not required).  A key element of 
this technique is that the single axis acceleration 
measurement of a vibrating sensor is perpendicular to 
its direction of motion.  It is therefore mounted in 
such a way that the sensing axis of the accelerometer 
is perpendicular to the direction of vibrating motion.  
Acceleration measurements from sensors 1F  and 1V  
are along the SJ  axis while the motion of sensor 1V  
is along the SI  axis.  In the same manner, 
acceleration measurements from sensors 2F  and 2V  
are along the SK  axis while the motion of sensor 2V  
is along the SJ  axis.  Following this pattern, 
acceleration measurements from sensors 3F  and 3V  
are along the SI  axis while the motion of 3V  is along 
the SK  axis.   

The acceleration of each vibrating sensor can be 
computed in terms of the fixed sensor acceleration 
using the general one point moving on a rigid body 
formula [8].  
 

( )
/ / / /

/ / / /2

j j j j j

j j j

V I F I V B B I F V

B I B I F V B I V B

a a a r

r v

α

ω ω ω

→

→

= + + ×

+ × × + ×
 (1) 

 
All terms in Equation (1) are expressed in the sensor 
reference frame, as shown in Equations (2-8).  
 

/
j j j

j

F F F
F I x s y s z sa a I a J a K= + +  (2) 

/
j j j

j

V V V
V I x s y s z sa a I a J a K= + +  (3) 

/
j j j

j

V V V
V B x s y s z sa a I a J a K= + +  (4) 

/B I s s spI qJ rKω = + +  (5) 

/B I s s spI qJ rKα = + +  (6) 

j j j j j j j jF V F V s F V s F V sr x I y J z K→ → → →= ∆ + ∆ + ∆  (7) 

/
j j j

j

V V V
V B x s y s z sv v I v J v K= + +  (8) 

 
The tilde (~) symbol used above vector components 
signifies that the quantity is with respect to the body, 
and not inertial space.  The components of Equation 
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(1) in the sensor reference frame are provided by 
Equation (9). 
 

2 2

2 2

2 2

0
2 0

0

j j j j

j j j j

j j j j

V F V V
x x x x
V F V V
y y y y

V F V V
z z z z

F

a a a vr q
a a a r p v

q pa a a v

xq r pq r pr q

pq r p r qr p

pr q qr p p q

       −                = + + −        
        −               

  ∆− − − +
 

+ + − − − 
 

− + − −  

j j

j j

j j

V

F V

F V

y

z

→

→

→

 
  ∆ 
 
∆  

 (9) 
 

Harmonic motion of each individual vibrating 
sensor is along a single axis.  Thus the components of 
the relative position, velocity and acceleration vectors 
can be expressed as shown in Equations (10-23). 
 

2 2 3 3
0F V F Vx x→ →∆ = ∆ =  (10) 

1 1 3 3
0F V F Vy y→ →∆ = ∆ =  (11) 

1 1 2 2
0F V F Vz z→ →∆ = ∆ =  (12) 

( )
1 1

sinF V x x xx n t Lω→∆ = −  (13) 

( )2 2
sinF V y y yy n t Lω→∆ = −  (14) 

( )
3 3

sinF V z z zz n t Lω→∆ = −  (15) 
3 32 1 1 2 0V VV V V V

x x y y z zv v v v v v= = = = = =  (16) 

( )1 cosV
x x x xv n tω ω=  (17) 

( )2 cosV
y y y yv n tω ω=  (18) 

( )3 cosV
z z z zv n tω ω=  (19) 

3 32 1 1 2 0V VV V V V
x x y y z za a a a a a= = = = = =  (20) 

( )1 2 sinV
x x x xa n tω ω= −  (21) 

( )2 2 sinV
y y y ya n tω ω= −  (22) 

( )3 2 sinV
z z z za n tω ω= −  (23) 

 
Extracting the SI  axis component of Equation (9) 
applied to sensors 3F  and 3V , the SJ  axis component 
applied to sensors 1F  and 1V , and the SK  axis 
components applied to sensors 2F  and 2V  yields 
Equation (24). 
 

( )
( )
( )

( )
( )
( )

3 3

1 1

2 2

( )( sin )
( )( sin )

( )( sin )

2 cos
2 cos

2 cos

V F
x x z z z
V F
y y x x x

V F
y y yz z

z z z

x x x

y y y

a a pr q n t L
a a pq r n t L

qr p n t La a

qn t
rn t

pn t

ω
ω

ω

ω ω
ω ω

ω ω

     + +         − = + +     
     

+ +          
 
  +  
 
  

 (24) 

 
Assume the vibrating sensors operate at a frequency 
much higher than that of the body, so much so that 
over a single cycle of sensor vibration, the angular 
rates are approximately constant and their time 
derivatives are zero.  Multiplying the components of 
Equation (24) by ( )cos ytω , ( )cos ztω  and ( )cos xtω , 
respectively, and integrating over a single cycle of 
sensor vibration isolates the angular velocity 
components. 
 

( ) 2 2

2

0

1 cos ( )
2

y

V F
y z z

y
p t a a dt

n

π ω

ω
π

= −∫  (25) 

( ) 3 3

2

0

1 cos ( )
2

z
V F

z x x
z

q t a a dt
n

π ω

ω
π

= −∫  (26) 

( ) 1 1

2

0

1 cos ( )
2

x
V F

x y y
x

r t a a dt
n

π ω

ω
π

= −∫  (27) 

 
Thus, to estimate the angular rate components of a 
body in the sensor reference frame, three quadratures 
must be performed using the fixed and vibrating 
sensor measurements.  Note the integrals are closely 
related to the first cosine wave harmonic amplitude.  
The difference between the fixed and vibrating 
accelerations form the multiplicative constant applied 
to the cosine wave.  This technique has the 
significant advantage that it naturally eliminates 
sensor bias and noise from the estimates of the 
angular rate components.  To see this, note that 
sensor bias adds a constant error to the acceleration 
difference in the integrals above, which, when 
multiplied by cos( )xtω , cos( )ytω  or cos( )ztω  and 
integrated over a single cycle of sensor vibration is 
zero.  Sensor noise adds a zero mean random quantity 
to the acceleration differences in Equations (25-27).  
This noise, when multiplied by a sinusoid and 
integrated over a single cycle also yields zero.  The 
disadvantage of this technique is that numerical 
quadrature must be accurately computed to estimate 
the angular velocity components.  Also, the algorithm 
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was developed based on the assumption that the 
angular rates are constant over a cycle of the 
vibrating sensors, thus limiting the useful frequency 
range of measurement. 

 
ANGULAR RATE ESTIMATION USING 

FIXED TRIAXIAL ACCELERATION SENSORS 
Viewing Figure 1, the technique developed by 

Costello and Jitpraphia [6] uses four fixed triaxial 
acceleration sensors.  The vibrating acceleration 
sensors are disregarded.  Application of Equation (1) 
to sensor point combinations 0 1F F− , 1 2F F−  and 

2 3F F−  generates three sets of equations which are 
concatenated into matrix form as shown in Equations 
(28-31). 
 

A MR=  (28) 

0 31 1 2 2

0 31 1 2 2

0 31 1 2 2

F FF F F F
x x x x x x
F FF F F F
y y y y y y

F FF F F F
z z z z z z

a a a a a a

A a a a a a a

a a a a a a

 − − −
 

= − − − 
 

− − −  

 (29) 

 
2 2

2 2

2 2

q r r pq q pr

M r pq p r p qr

q pr p qr p q

 − − − + +
 

= + − − − + 
 
− + + − −  

 (30) 

0
2 0

0 0

x x

y y

z

L L
R L L

L

 −
 

= − 
 − 

 (31) 

  The matrix A  is populated by sensor 
measurements and is known at each discrete time 
instant.  The distance matrix R  is defined by sensor 
geometry and the matrix M  contains the unknown 
quantities that are to be estimated.  Provided the 
distance matrix R  is nonsingular, the matrix M  can 
be computed.  Previous efforts have yielded 
algorithms to compute angular rate components using 
the elements of the M  matrix [2,3,6].   

( ) ( )( )
( )

1
2 2 21

1,1 2,2 1,2 2,12

1
1 2

1,1 2,22

pp s M M M M

M M

= − + +

+ − 

 (32) 

( ) ( )( )
( )

1
2 2 21

1,1 2,2 1,2 2,12

1
1 2

1,1 2,22

qq s M M M M

M M

= − + +

− − 

 (33) 

( ) ( )( )
( )

1
2 2 21

1,1 2,2 1,2 2,12

1
1 2

1,1 2,22

rr s M M M M

M M

= − + +

− + 

 (34) 

where , ,p q rs s s  are the sign of , ,p q r .  Angular rate 
estimation using only fixed triaxial acceleration 
measurement is sensitive to acceleration 
measurement noise, particularly for some critical 
combinations of sensor geometry and angular rates.  
Moreover, the algebraic sign of the angular rates 
cannot be ascertained using only fixed triaxial 
acceleration measurement as two valid solutions 
exist.  

 
ANGULAR RATE ESTIMATION USING 

FIXED AND VIBRATING TRIAXIAL 
ACCELERATION SENSORS 

Again consulting Figure 1, consider estimating 
angular rates using fixed and vibrating triaxial 
acceleration sensors.  Applying Equation (1) to each 
fixed and rotating point combination yields Equation 
(35).   

2A MR SV= +  (35) 

3 3 31 1 1 2 2 2

3 3 31 1 1 2 2 2

3 3 31 1 1 2 2 2

V F VV F V V F V
x x x x x x x x x

V F VV F V V F V
y y y y y y y y y

V F VV F V V F V
z z z z z z z z z

a a a a a a a a a

A a a a a a a a a a

a a a a a a a a a

 − − − − − −
 

= − − − − − − 
 

− − − − − −  
 (36) 
 where the matrix M is given by Equation (30). 
 

sin( ) 0 0
0 sin( ) 0

0 0 sin( )

x x x

y y y

z z z

n t L
R n t L

n t L

ω
ω

ω

 −
 

= − 
 − 

 (37) 
 

cos( ) 0 0
0 cos( ) 0

0 0 cos( )

x x x

y y y

z z z

n t
V n t

n t

ω ω
ω ω

ω ω

 
 

=  
 
 

 (38) 
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0
0

0

r q
S r p

q p

− 
 = − 
 − 

 (39) 

 Solving for S  yields Equation  (40), 
 

( )1 11
2

S A AR R V− −= −  (40) 

which is utilized to compute the components of the 

angular rate vector.  Solving for the angular rates 

yields: 

 

( ) ( )( ) ( )
( )

( ) ( )( ) ( )
( )

02 2 2

3 0 3 3

sin 2

8 cos

sin 2

8 cos

FF V F
z z y y y y z z

y y y y

F F V F
y y z z z z y y

z z z z

a a L n t L a a
p

L n t

a a L n t L a a

L n t

ω

ω ω

ω

ω ω

− − + −
=

− − + −
−

(41) 

 
( ) ( )( ) ( )

( )

( ) ( )( ) ( )
( )

3 0 3 3

01 1 1

sin 2

8 cos

sin 2

8 cos

F F V F
x x z z z z x x

z z z z

FF V F
z z x x x x z z

x x x x

a a L n t L a a
q

L n t

a a L n t L a a

L n t

ω

ω ω

ω

ω ω

− − + −
=

− − + −
−

(42) 

 
( ) ( )( ) ( )

( )

( ) ( )( ) ( )
( )

01 1 1

02 2 2

sin 2

8 cos

sin 2

8 cos

FF V F
y y x x x x y y

x x x x

FF V F
x x y y y y x x

y y y y

a a L n t L a a
r

L n t

a a L n t L a a

L n t

ω

ω ω

ω

ω ω

− − + −
=

− − + −
−

(43) 

 
Using the angular rates from Equations (41-43) and 
the matrix M  of Equation (28) which employs only 
the fixed triaxial sensors 1 2 3, ,F F F , the angular 
acceleration components can be determined as well. 
 

( ) ( )0 3 02
1

4
F F FF

z z z y y y
y z

p L a a L a a
L L

 = − − −   (44) 

( ) ( )3 0 01
1

4
F F FF

x x x z z z
x z

q L a a L a a
L L

 = − − −   (45) 

( ) ( )0 01 2
1

4
F FF F

y y y x x x
x y

r L a a L a a
L L

 = − − −   (46) 

 

It should be noted that in comparison to the method 
developed by Merhav [7], the method described here 
requires more sensors, but does not require 
integration over a cycle of vibration.  Furthermore, it 
makes no assumptions about the angular rates as 
constant over a single cycle of sensor vibration, 
extending the range of usable frequency band of the 
method.  However, in computing the angular rates 
p , q  and r , a problem arises as the combination of 

tω approaches an odd multiple of 
2
π , where 

( )cos 0tω =  and the solutions listed in Equations 
(41-43) become singular.  This problem is overcome 
by sampling the data in such a way that the 
combination of tω  is always nearly a common 
multiple of π  so that ( )cos 1tω ≈ ± .  This requires 
knowledge of the oscillation frequency and the 
sampling rate of data collection. 
 

ACCELEROMETER MODEL 
In order to investigate the performance of the 

proposed algorithm in the presence of inaccurate and 
realistic acceleration measurements, simulated 
acceleration readings that include noise, bias, cross-
axis sensitivity, and scale factor errors are analyzed.  
Furthermore, accelerometers sense gravity, so this 
effect is present in the readings and must be 
subtracted to obtain the acceleration readings.  A 
triaxial acceleration measurement is modeled as 
 

i i i i i

i i i i i

i i i i i

i i

i i

i i

x xx xy xz x

y xy yy yz y

z xz yz zz zSensed

x x

y y

z zNoise

a S C C a s
a C S C a g s c

c ca C C S a

a a

a a

a a

θ

φ θ

φ θ

        −              = −      
                     

   
    + +   
  
     Bias






 (47) 
 
in which , ,

i i ixx yy zzS S S  are orthogonal components 

of the scale factor for the ith accelerometer and 
, ,

i i ixy xz yzC C C represent components of cross axis 

sensitivity for the same accelerometer. 
Data acquisition also poses a threat to 

acceleration measurement integrity.  Voltage 
measurements are digitized, leading to quantization 
error caused by the A/D converter.  The smallest 
incremental voltage signal that can be represented 
after A/D conversion is referred to as the quantization 
level.  It is proportional to the voltage range and the 
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number of bits of the A/D converter.  Under the 
assumption that the 2's complement scheme of binary 
coding is used , the quantization level is [9]: 
 

2
fs
n

V
q =  (48) 

where n  is the number of bits and fsV  is the full 
scale voltage.  Equation (48) illustrates the smallest 
voltage increment a given A/D converter can 
represent.  Thus, a 0-8V, 4 bit A/D converter would 
have a quantization level of 0.5V.  The quantized 
acceleration reading takes into account the 
quantization level and the scale factor of the 
accelerometer. 

q
j

qa
S

=  (49) 

The difference between true and quantized 
acceleration readings represents the acceleration error 
caused by A/D conversion. 

 
ERROR ANALYSIS 

If x y zL L L L= = =  and x y zn n n n= = =  and, 
in addition, the data is sampled as described 
previously, then Equations (41-43) reduce to 

  
0 3 3 0 2 22 2

8 8

F F V F F V
y y y z z za a a a a a

p
n nω

+ − + −
= −  (50) 

0 3 30 1 1 22
8 8

F F VF F V
x x xz z z a a aa a a

q
n nω

+ −+ −
= −  (51) 

0 1 10 2 2 22
8 8

F F VF F V
y y yx x x a a aa a a

r
n nω

+ −+ −
= −  (52) 

Notice the linear dependence of the solution on the 
acceleration measurements.  Thus, the structure of 
error propagation from accelerometer error to angular 
rate estimation error can be represented using a linear 
function.  The dependence of the solution on error in 
sensor vibration amplitude takes on the form of 

( )error

C
n n+  where C  is a constant, while the 

dependence of the solution on error in vibration 

frequency is ( )
1

0
error

CC ω ω++  where 0C  and 1C  are 

also constants.  The solution for p , q , r  does not 
depend on the length L . 
 

SENSOR FUSION 
The algorithm discussed can be employed to 

estimate angular rates and accelerations using 
multiple clusters of sensors.  The benefit of using 
multiple clusters is the inherent smoothing of the 
output data in the presence of errors.   In the simplest 
case, the sensor cube in Figure 1 could have m  cubes 
packed on either side of it.  A more efficient use of 
space is that illustrated by Figure 2, where each cube 
in the figure is not only packed end to end, but also 
contains two sensor clusters at each location; one in 
the original orientation and the other rotated as 
shown.  For each cluster, an estimate of the angular 
velocity and angular acceleration is computed.  
Performing this operation for all m clusters and 
averaging the results produces an overall estimate of 
the angular velocity and angular acceleration of the 
body. 
 

EXAMPLE RESULTS 
In order to exercise the algorithm developed 

above, the algorithm is used to estimate angular rates 
of a rocket in atmospheric flight.  The rocket 
trajectories to follow are generated from a 6 degree of 
freedom projectile simulation utilizing a 2-inch 
square sensor cube and vibrating sensors having an 
oscillation frequency of 1000 Hz and amplitude of 
vibration of 0.1 inches.  See reference 10 for details 
of the projectile simulation  Normally distributed 
random noise, with a standard deviation of 50 mg’s 
(1.61 ft/s2), is added to each acceleration 
measurement.  Furthermore, cross axis sensitivity is 
set to zero mean with a standard deviation of 1%.  
The scale factor error has a  3% standard deviation 
from unity.  A 12 bit A/D converter is used, with an 
accelerometer scale factor of 200mV/g.  500 clusters 
are employed. 

Figures 3-5 provide estimation results for the 
trajectory of a generic direct fire rocket in the first 
0.25 seconds of atmospheric flight. As shown in 
Figures 3 and 4, roll and pitch rates are very 
accurately estimated.  Figure 5 indicates that yaw rate 
is slightly biased.  This is caused by scale factor error 
and cross axis sensitivity, both of which equally 
contribute to  estimation errors.  

Roll acceleration is poorly predicted (Figure 6).  
This large error stems from 0F

za  and 2F
za  in Equation 

(44), which are equal and opposite, so in the absence 
of error, they cancel out.  For a projectile spinning at 
a high rate, the magnitude of these accelerations are 
large, compared to the magnitudes of 0F

ya  and 3F
ya .  

A small percentage of unbalance between these 
accelerations is sufficient to cause large estimation 
errors. 
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Pitch and yaw accelerations shown in Figures 7-
8 are also very sensitive to error.  They have 
significant bias, but take on the same oscillatory 
motion as the actual data. 

In order to understand the benefit of employing 
many clusters, Figures 9-14 plot the mean absolute 
value of the error for , , , ,p q r p q  and r as a function 
of time after launch for sensor configurations with 
2,10,100,500  clusters.  The mean absolute value of 
error is computed by averaging 20 exemplar rocket 
trajectories with an impact point CEP of 2.62m at a 
range of 250m.  As would be expected, estimation 
eror is reduced as the number of sensor clusters is 
increased.  Also, estimation error is reduced as the 
projectile flies downrange due to reduced projectile 
spin rate leading to a reduced effect from cross axis 
sensitivity. 

Comparing the roll error plot of Figure 9 to the 
trajectory simulation of Figure 3, it is clear that the 
roll error is a very small portion of the total roll rate, 
nearly regardless of the number of clusters used.  
This is not the case for pitch and yaw rates.  Figures 
10 and 11 indicate that a larger number of clusters is 
necessary to provide error levels that are much 
smaller than the total signal.  On the other hand, 
angular accleration estimates are poor, even with 500 
clusters. 

In order to consider the effect of different 
accelerometer error components on angular rate and 
acceleration estimation, a breakdown of the errors is 
shown in Figures 15-20 for the 2 cluster sensor 
configuration.  To generate these results, all 
accelerometer errors were nulled, except for the error 
source under consideration.  The same exemplar 
trajectories used for Figures 8-14 were used in 
Figures 15-20.  Examining the roll rate error, it is 
clear that accelerometer scale factor dominates the 
total error.  Pitch and yaw rate error properties 
(Figures 16 and 17) are also significantly effected by 
scale factor errors, but also by accelerometer cross 
axis sensitivity as well.  The angular acceleration 
estimates (Figures 18,19 and 20) are also dominated 
by accelerometer scale factor and cross axis 
sensitivity as well. 

A similar trend is evident with larger numbers 
of sensor clusters as well, but with overall error 
magnitudes reduced. 

 
CONCLUSION 

A method for estimating angular rates and 
angular acceleration of a body using clusters of seven 
triaxial linear acceleration measurements is 
developed and exercised.  The method employs four 
triaxial accelerometers fixed to the body and three 
triaxial accelerometers that vibrate at a constant 

frequency with respect to the body.  While other 
solutions to this problem exist, the method reported 
here is unique in that it does not require integration 
and also properly resolves the algebraic sign of the 
angular rates.  When applying this estimation 
technique to an atmospheric rocket, it is shown that 
the method adequately estimates rocket angular rates 
in the presence of realistic accelerometer errors, 
including noise, bias, scale factor, and cross axis 
sensitivity.  Angular acceleration components are 
poorly estimated.  It is also shown that using this 
algorithm with many clusters of sensors effectively 
reduces estimation error.  Cross axis sensitivity and 
scale factor error are the driving accelerometer errors 
that induce large estimation errors for both angular 
rates and angular acceleration.  
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Figure 1 – Sensor Cube Geometry 

 
 
 
 
 
 

sI

sJ

sK  
 

Figure 2.  Cluster Layout 
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Figure 3.  Estimated Roll Rate versus Time. 
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Figure 4.  Estimated Pitch Rate versus Time. 
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Figure 5.  Estimated Yaw Rate versus Time. 
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Figure 6.  Estimated Roll Acceleration versus Time. 
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Figure 7.  Estimated Pitch Acceleration versus Time. 
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Figure 8.  Estimated Yaw Acceleration versus Time. 
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Figure 9.  Mean Roll Rate Error versus Time. 
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Figure 10.  Mean Pitch Rate Error versus Time. 
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Figure 11.  Mean Yaw Rate Error versus Time. 
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Figure 12.  Mean Roll Acceleration Error versus 

Time. 
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Figure 13.  Mean Pitch Acceleration Error versus 

Time. 
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Figure 14.  Mean Yaw Acceleration Error versus 

Time. 
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Figure 15.  Components Of Roll Rate Error For 2 

Cluster Arrangement versus Time. 
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Figure 16.  Components Of Pitch Rate Error For 2 

Cluster Arrangement versus Time. 
 



AIAA-2003-5623 

 11

0 1 2 3 4 5 60

0.5

1

1.5

2

2.5

Time (s)

M
ea

n 
 R

er
ro

r (r
ad

/s)
All
Scale Factor
Cross Axis
Bias
Noise

 
Figure 17.  Components Of Yaw Rate Error For 2 

Cluster Arrangement versus Time. 
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Figure 18.  Components Of Roll Acceleration Error 

For 2 Cluster Arrangement versus Time. 
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Figure 19.  Components Of Pitch Acceleration Error 

For 2 Cluster Arrangement versus Time. 
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Figure 20.  Components Of Yaw Acceleration Error 

For 2 Cluster Arrangement versus Time. 


