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The ability to compute the weight and balance of a helicopter in flight under general conditions is an enabling

technology for future condition based maintenance systems as well as advanced automatic flight control systems.

This paper creates a real-timeweight and balance estimation algorithm using an extendedKalman filter framework.

To highlight estimation characteristics, the algorithm is exercised on the OH-6A helicopter in a variety of flight

regimes. The algorithm is examined in hover and forward flight as well as situations where loads are dropped and

picked up in flight. For sample scenarios considered, the algorithm quickly estimates station line and butt line mass

center position (1 s) and more slowly converges on helicopter weight (10 s). To estimate the helicopter waterline, the

algorithm requiresmodest flightmaneuvering where a nonzero roll rate is present. The algorithm is also shown to be

reasonably robust relative to sensor and model errors with increasing estimation error with increasing levels of

model mismatch and sensor error.

Nomenclature

IB = flapping inertia of rotor blade
IH = inertia matrix of helicopter about its mass

center
L,M, N = Total moment on the helicopter about the

mass center in the helicopter reference frame
m,W = mass and weight of helicopter
p, q, r = components of angular velocity of helicopter

in the helicopter reference frame
R = rotor radius
TH = transformation matrix from inertial reference

frame to helicopter reference frame
u, v, w = components of mass center velocity of

helicopter in the helicopter reference frame
X, Y, Z = total force on the helicopter in the helicopter

reference frame
x, y, z = components of helicopter mass center

position vector in an inertial frame
�, �0, �1C, �1S = flapping angle, collective, longitudinal, lateral

flapping angles
�, �,  = Euler roll, pitch, and yaw angles of helicopter

I. Introduction

I T IS well-known that weight and mass center location greatly
affect static and dynamic characteristics of helicopters. These

quantities are often manipulated during the design process to obtain
desired performance from the aircraft. Safe operation of helicopters
is a function of the weight of the aircraft and the location of the mass
center. Sufficiently accurate in-flight estimation of the gross weight
and mass center location can substantially improve overall per-
formance of the air vehicle as these feedback signals can be put to
good use within a condition based maintenance system, a health and
usage monitoring system, the automatic flight control system, and
mission planning software systems. Determining the useful life of

parts on helicopters relies on knowledge of how long the aircraft is in
a given flight condition so that damage on components can be prop-
erly tallied. Since damage on components is a strong function of
gross weight and mass center location, accurate and relatively fre-
quent in-flight estimation of gross weight and mass center location
help markedly enhance safety, reduce the operating cost of heli-
copters by removing parts on the aircraft at the end of their useful life,
and avoid replacing parts too early or leaving them on the aircraft too
long. Real-time weight and balance information can also be used for
flight control. This is particularly true for heavy lift helicopters where
it may be necessary to schedule gains in the flight control system as a
function of the gross weight and mass center location to ensure
adequate handling qualities over the operational envelope of the
aircraft. Gain scheduling is often necessary to ensure integrity of
the airframe by altering control inputs so as to limit flight loads on the
structure.

While simple and straightforward, practical experience has shown
that it is not feasible to rely on aircrew estimates of aircraft gross
weight and center of gravity for most applications. The capability of
helicopters to change gross weight, center of gravity position, and
rotor thrust level during flight, or while the landing gear are in full or
partial ground contact, makes reliable sensing of aircraft gross
weight using strain gages installed on the landing gear an impractical
means of estimating gross weight and center of gravity for most
rotorcraft. More sophisticated methods have been developed, but all
suffer from considerable limitations that preclude general use.
Moffatt [1] created a simple algorithm to predict the weight of a
helicopter which requires only engine torque, hover height, pressure
altitude, and ambient temperature. The algorithm is based on the
UH-IH hover performance chart found in the operator user manual.
Morales and Haas [2] created a neural network algorithm to esti-
mate the weight of a helicopter in hover. Although this work only
addressed the hover flight regime, it showed the ability of neural
networks to be properly trained on noisy flight test data, and sub-
sequently employed for in-flight gross weight estimation. Idan et al.
[3] also created a neural network based method to estimate gross
weight alongwith themass center of an aircraft inflight. To speed the
training process for the neural network, basic flight mechanic
relationswere incorporated into the algorithm. Teal et al. [4] created a
regime recognition algorithm for the MH-47E successful effort
which estimated helicopter gross weight and the weight of externally
slung cargo for all flight conditions using inertial sensor data and air
data systemmeasurements. The gross weight estimator is used in the
MH-47E structural usage monitoring system (SUMS) to monitor
fatigue life expenditure in life limited dynamic components. The
gross weight estimation process described by Teal et al. uses
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correctedmoment theory to estimate shaft horsepower, and then uses
the difference between the actual and estimated shaft horsepower to
adjust the estimate of gross weight until the estimated power level
tracks the actual power level. This algorithm estimates gross weight
only and is not intended for real-time use.

This work presents a new approach to real-time in-flight estima-
tion of helicopter gross weight and mass center location. An
extendedKalmanfilter is constructedwith a state vector consisting of
weight and balance states as well as rigid vehicle states. A unique
feature of the algorithm, as compared with existing methods, is its
general applicability, including scenarios where the weight and
balance changes due to dropping off and picking up loads. The
developed algorithm is exercised on the OH-6A helicopter and
results are presented as a function of different maneuvers and differ-
ent levels of model and sensor error. This paper presents a fun-
damentally new technique to an important problem by combining a
well established state estimation technique from control theory
and accepted methods for flight dynamic modeling of rotorcraft.
The work presented here also includes an initial exploration of the
estimation algorithm’s performance characteristics. The future of
this technique is promising as the method is shown to work well in
practical helicopter flight scenarios.

II. Helicopter Dynamic Model

For the work reported below, helicopter motion is simulated by
modeling the aircraft as a rigid body with 6 degrees of freedom.
This dynamic model provides a reasonable level of fidelity for the
purposes of this investigation. This model is similar to a well-known
helicopter dynamic model of comparable complexity such as
ARMCOP [5] and is a compromise between more complex
helicopter models such as FLIGHTLAB [6] and far simpler ones
such as TMAN [7]. While flight dynamic models can be tuned to
reproduce the behavior observed in flight tests, they are by no means
perfect. There will always be a mismatch between motion predicted
using a dynamic model and flight measurements.

The state vector consists of 12 state variables that describe position
and velocity of the vehicle’s mass center and the attitude and angular
rates of the vehicle with respect to inertial space:8<
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In the previous equations the normal shorthand notation for sine
and cosine is employed: s� � sin���, c� � cos���.

The total forces andmoments in the helicopter reference frame that
appear in Eqs. (3) and (4) have contributions from helicopter weight,
the main rotor, the tail rotor, fuselage aerodynamics, and empennage
aerodynamics. Forces from each component are first found in that
component’s reference frame and then are transformed into the
vehicle’s body frame. Moment contributions from each component
come from two sources: puremoments andmoments due to the offset
of the component’s forces from the vehicle’s center of mass.

The rotor model that is used for both the main rotor and tail rotor
is a quasi-static combined blade–element/momentum–theory ap-
proach [8]. The model assumes rigid blades but accounts for twist,
taper, and nonzeroflapping hinge offset. First, harmonicflapping and
uniform inflow is assumed,

�� �0 � �1C cos� MR� � �1S sin� MR� (5)

The differential equation that governs rotor flapping dynamics is
given in the next equation:
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At a given instant in time the quasi-steady rotor flapping angles,
and subsequently the rotor loads, are computed by a harmonic
balance procedure. Nonlinear algebraic collective, longitudinal, and
lateral rotor flapping equations are formed as shown in the following
equations: Z

2�

0
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These equations are satisfied through selection of the rotor
flapping angles �0, �1C, and �1S, and are numerically solved by a
Newton–Rhapson iteration scheme. It is important to note that pilot
controls enter the rotorflapping equations through the right hand side
forcing function. Force and moment contributions from the fuselage
and empennage are modeled with aerodynamic table lookups.

An additional consideration when implementing this flight dy-
namic model alongside an algorithm for weight and balance param-
eter estimation is the vehicle moments of inertia. In the work
presented here, the vehiclemoments of inertia are adjusted from their
nominal values as the estimates of mass center location and gross
weight change.

III. Estimation Algorithm

The estimation algorithm seeks to compute the mass of the
helicopter along with the three components of the mass center
locations using rigid body aircraft motion feedback and an internal
model of the helicopter (Fig. 1).

An extended Kalman filter is created with rigid aircraft position
�x; y; z�, orientation (phi, theta, psi), translational velocity �u; v; w�,
angular velocity �p; q; r�, aircraft mass (m), and aircraft mass center
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location (scg, bcg, wcg) as states. The extended Kalman filter is a
trusted industry standard for state estimation processes. The non-
linear helicopter model described above is used for the internal
aircraft model. The weight and balance of the helicopter is assumed
to vary in a relatively slow manner and the dynamics of the weight
and balance states are trivially assumed to be given in the following
equations:

_m� 0 (12)

_x CG � 0 (13)

_y CG � 0 (14)

_z CG � 0 (15)

The meta model of helicopter rigid body motion and weight and
balance estimation states is cast together as a nonlinear dynamic
system:

_�� f��; �� � "�t� (16)

The vector � contains control inputs consisting of collective,
longitudinal cyclic, lateral cyclic and pedal. The vector " is process
noise. The meta state is split into the helicopter rigid body state and
the mass and balance state:
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Measurements of the rigid body motion of the helicopter used as
input to the estimation algorithm contain rigid body motion and
noise:

�� h��; �� � 	�t� (18)

In the previous equation, 	�t� represents a vector of measurement
noise.

Given the nonlinear system model above, an extended Kalman
filter has five main steps associated with each estimation cycle: meta
state propagation, meta state error covariance propagation, Kalman
gain calculation, meta state Kalman filter update, andmeta state error
covariance Kalman filter update. This is depicted in Fig. 2.

Several of the steps in the Kalman filter require a linear state space
dynamic model and a linear measurement model:

_��t� � A��t� � B��t� (19)

��t� � C��t� (20)

Of course, the state dynamic equations are highly nonlinear and a
numerical, finite difference approach is used to obtain the needed
derivatives for the linear time invariant dynamic model:
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The meta state of the system is propagated forward in time by
numerically integrating the equations of motion (Eq. (16)) with the
process noise set to zero. The error covariance differential equation
(Eq. (22)) is also numerically integrated in time to propagate itself
forward:

_P� AP� PAT �Q � PHTR�1HP (22)

For the purposes of this paper, it is assumed that the vehicle’s
onboard sensors and associated signal processing packages have
been given sufficient time to construct a useful rigid body state vector
at the time the estimation algorithm is initiated. Because the initial
rigid body state is assumed known, the associated elements of the P
matrix are initially zero in this investigation. In Eq. (22),Q andR are
the covariancematrices for the process noise andmeasurement noise,
respectively. The performance of this filtering technique depends
largely upon the selected values forQ and R. Because the parameter
estimation process is cast in the guise of a state estimation process,
the Q matrix is weighted heavily toward the unknown parameter
states.

Aside from the linearization process of the helicopter plant, the
most computationally expensive part of this estimation technique is
calculating theKalman gainmatrix. The formula for theKalman gain
is provided in Eq. (23):

K � PHT �HPHT � R��1 (23)

Note that full state feedback is assumed and a 12 � 12matrixmust be
inverted at each computation cycle. Because not all rigid body states
contribute to the weight and mass center estimation (horizontal
coordinates and heading angle), omitting the unneeded states from
this algorithm would help to reduce computational requirements in
practical implementation. For the sake of brevity, further discussion
of the extended Kalman filter is omitted. More details on the
extended Kalman filter can be found in [9,10].

IV. Results

To explore the viability of the above estimation scheme for real-
time, in-flight helicopter gross weight and mass center location
prediction, a set of simulation results have been generated for the
OH-6A helicopter shown in Fig. 3 [11]. The OH-6A is a single-
engine light helicopter with a four-blade main rotor used for
personnel transport, escort and attack missions, and observation.
The main rotor has a nondimensional twist of �0:14, a flapping
hinge offset of 0.46 ft, a radius of 13.17 ft, a rotational speed of
50:58 rad=s, a blade mass of 1.16 slugs, a flapping inertia of
46:83 slug ft2, and an average chord of 0.56 ft. The main rotor is

Fig. 1 Estimation algorithm schematic.

Fig. 2 Kalman filter schematic.
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located at station line 100.0 in., butt line 0.0 in., and waterline of
100.0 in.

The tail rotor is a two blade systemwith a nondimensional twist of
�0:14, a radius of 1.13 ft, and a rotational speed of 326:1 rad=s. The
tail rotor is located at station line 282.00 in., butt line�11:6 in:, and
water line 71.3 in. The nominal gross weight of the vehicle is
2550 lbf. The nominal mass center location is station line 100.0 in.,
butt line 0.0 in., and water line 49.6 in.

Figures 4–7 show relevant aircraft motion for a maneuver used to
test the algorithm. In the maneuver, the OH-6A is in forward flight
at a reasonably steady speed and at nearly constant pitch attitude.
The aircraft is maneuvering in the lateral channel with roll angle
excursions on the order of 50 deg over a 20 s period, ranging from
�20 deg to �30 deg (Fig. 4) with associated peak roll rates of
30 deg =s (Fig. 6). The aircraft also has heading oscillations from
�20 deg to �40 deg (Fig. 5) with peak yaw rates of 7 deg =s.
During this maneuver condition, the aircraft maintains constant

altitude and swerves modestly. Control activity is modest with main
rotor collective settling around 12.5 deg and cyclic pitch oscillations
of under 2 deg in both channels. For this maneuver, weight and
balance estimation results are shown in Figs. 8–11. The estimator is
turned on at t� 0 s with the initial gross weight in error by 250 lbf
and the initial mass center station line, butt line, and water line in
error by 2, 2, and 1 in., respectively. The Kalman filter weighting
matrices are set to 0.02 for the rotorcraft states, 1000 for the weight
and balance states with the exception of the water line state which is
set to 2000, and 1.0 for the measurement noise. The weight and mass
center water line are effectively estimated in slightly less than 10 s
(Figs. 8 and 11). Converged estimates for the mass center station line
and butt line occurmuchmore rapidly (Figs. 9 and 10). Estimation of

Fig. 3 OH-6A helicopter.

Fig. 4 Roll angle.

Fig. 5 Yaw angle.

Fig. 6 Roll rate.

Fig. 7 Pitch rate.

Fig. 8 Gross weight estimation in forward flight; (GW denotes gross

weight).
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the mass center water line is tricky and requires aircraft roll rate to
render the water line observable with the estimation filter. The filter
data shown in Fig. 12 is a result of a poorly weightedQmatrix and a
large initial error in waterline estimation (2 in.). By viewing the
aircraft roll rate (Fig. 6) alongside Fig. 12 it is clear that estimation of
the water line requires the roll rate to progress toward the actual
value. The results shown are typical for forward flight.

Figures 13–16 present estimation results for a hover case in which
the weight and mass center location are suddenly changed due to a
500 lbf load added below and to the right of the original mass center
location. For the first 2.5 s of the hover, the vehicle is at baseline

Fig. 9 Mass center station line estimation in forwardflight; (SLdenotes

station line; CGSL denotes center of gravity station line).

Fig. 10 Mass center butt line estimation in forward flight; (BL denotes

butt line; CGBL denotes center of gravity butt line).

Fig. 11 Mass center water line estimation in forward flight; (WL

denotes water line; CGWL denotes center of gravity water line).

Fig. 12 Mass center water line estimation in forward flight (poor initial

guess); (WL denotes water line).

Fig. 13 Gross weight estimation in hover; (GW denotes gross weight).

Fig. 14 Mass center station line estimation in hover; (SL denotes
station line).

Fig. 15 Mass center butt line estimation in hover; (BL denotes butt

line).
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values of weight� 2550 lbf, mass center station line� 100 in:,
mass center butt line� 0:0 in:, and mass center water line�
49:6 in:. After the weight is added, weight� 3050 lbf, mass center
station line� 102 in:, mass center butt line� 2:0 in:, and mass
center water line� 46:4 in:. When the weight is added, the
estimation algorithm is reinitiated so that the filter can immediately
adjust to changes in weight and balance properties. Because
Eqs. (12–15) constrain the weight and balance parameters to be
constant, this resetting is necessary if any sudden changes in gross
weight or mass center location occur. At t� 5 s, the vehicle begins a
benign maneuver in which it picks up a small amount of flight speed
and banks a small amount. The Kalman filter weighting matrices are
set the same as in the previous forward flight case, except the Q
matrix associated with the weight and balance states equals 2000.

During the pure hover portion of the maneuver, the parameters with
better estimation performance (gross weight, station line, and butt
line) perform reasonably well in adjusting to a new weight and
balance condition. The less observable parameter (water line) does a
poor job. After slight maneuvering occurs at t� 5 s, the parameter
estimates immediately begin correcting themselves as soon as some
angular rates are present. Just like the forward flight case, the water
line estimate moves fastest when a roll rate is present.

To explore the performance of the weight and balance estimation
algorithm under nonideal conditions, the algorithm was exercised
with aMonteCarlo simulationwith sensor andmodel error. A total of
250 sample runs were performed for both sensor error and model
error. The maneuver used for the Monte Carlo simulations is the

Fig. 16 Mass center water line estimation in hover; (WL denotes water

line).

Fig. 17 Histogram of gross weight estimation with sensor noise; (GW

denotes gross weight).

Fig. 18 Histogram of mass center station line estimation with sensor
noise; (SL denotes station line).

Fig. 19 Histogram of mass center butt line estimation with sensor

noise; (BL denotes butt line).

Fig. 20 Histogram of mass center water line estimation with sensor

noise; (WL denotes water line).

Table 2 Results from Monte Carlo simulations with model error

Parameter Mean Standard deviation Correct value

Gross weight 2551.7 lbf 30.15 lbf 2550.0 lbf
c.g. station line 99.99 in. 0.0476 in. 100.0 in.
c.g. butt line �0:009 in: 0.0573 in. 0.0 in.
c.g. water line 49.39 in. 1.81 in. 49.6 in.

Table 1 Results from Monte Carlo simulations

with measurement error

Parameter Mean Standard deviation Correct value

Gross weight 2554.9 lbf 19.39 lbf 2550.0 lbf
c.g. station line 100.005 in. 0.0816 in. 100.0 in.
c.g. butt line 0.009 in. 0.1086 in. 0.0 in.
c.g. water line 49.54 in. 1.23 in. 49.6 in.
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same forward flight maneuver that is outlined in Figs. 4–7. Sensor
errors were included in the Monte Carlo simulation by adding bias
and noise to each sensor output. The standard deviation for bias and
noise was 3.3 ft for position states, 0.2 deg for attitude states, 1:0 ft=s
for velocity states, and 0:6 deg =s for angular rates. The Figs. 17–20
show histograms of theMonte Carlo results for the sensor error case.
The results are also summarized in Table 1. The mean estimation
values and associated standard deviations for gross weight, mass
center station line, and mass center butt line are accurate and tightly
bound, while the water line estimation is fairly poor and exhibits a
standard deviation which is a notable percentage of the practical
range of the water line (mean� 49:53 in:, std� 1:23 in:). Model
errorwas included in theMonte Carlo simulation by creating amodel
mismatch between the actual helicopter model and the internal
helicopter model employed by the estimator. The vehicle geometry,
baseline moments of inertia, and aerodynamic data were all altered
slightly in each of the 250 simulations. Some example values of
model error are 0.3 lbs for main rotor blade weight, 0.02 ft for main
rotor radius, and 2% for normalized aerodynamic coefficients. The
algorithm showed a similar level of robustness to model error with
accurate mean estimation values and standard deviations. The results
are summarized in Table 2. Figures 21–24 present histograms of
Monte Carlo simulation results for the model error case. While the
results for all the parameters in the model error case show the same
trends as the sensor error case, the standard deviation in estimations
tend to be slightly larger due to the fact that the model error induces
more severe estimation errors than sensor errors.

The biggest hurdle for practical implementation of this method is
minimizing the influence of modeling errors. It is expected that the
best way for this problem to be addressed is to make use of a model
that adaptively estimates and subsequently cancels model mismatch.
Adaptive methods have become increasingly used in air vehicle
flight control and would serve to enhance the algorithm presented

here. Testing such a system is beyond the scope of this paper and is
left to further work. The results presented here demonstrate the
capability of the extendedKalmanfilter to accurately estimateweight
and balance parameters in rotorcraft when paired with a flight
dynamic model of acceptable fidelity.

V. Conclusions

By casting estimation of weight andmass center location as a state
estimation problem, the machinery of extended Kalman filtering can
be employed for in-flight and real-time estimation of rotorcraft
weight and balance. The presented algorithm is shown to work well
in both hover and forward flight, provided sufficient motion is
present to render the parameters observable. Also, the method works
well in cases where loads are dropped or picked up in flight.
Typically the algorithm quickly estimates station line and butt line
mass center position and more slowly converges on helicopter
weight and water line. The algorithm is also shown to be reasonably
robust to sensor and model errors. While further work is necessary to
investigate the details of implementation challenges, the extended
Kalman filter provides a successful framework for estimating weight
and balance parameters and is reasonably robust tomeasurement and
modeling errors. By combining the extended Kalman filter with
traditional flight dynamic models to estimate gross weight and mass
center location, this work has introduced a novel solution to a
pressing problem.
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