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The bulk of research in the field of precision guided airdrop systems has focused on improving landing accuracy in

the presence of atmospheric winds that can exceed vehicle airspeed. One important challenge of parafoil systems is

their highly uncertain flight dynamic behavior and control response, which can result from canopy degradation or an

offnominal inflation event. This significantly impacts the ability to reach the target and can often lead to very large

miss distances. This work addresses guided airdrop system model uncertainty with a novel combined direct and

indirect adaptive control strategy to quickly characterize vehicle dynamics and lateral control sensitivity in flight.

Extensive simulation and experimental flight testing indicate that the proposed adaptive algorithm is capable of

high-accuracy landing in a large variety of degraded conditions, including unknown nonlinear changes in control

sensitivity aswell as control reversals. In comparison, current industry standard algorithms experience over an order

of magnitude decrease in accuracy when tested under identical scenarios.

Nomenclature

f�� = static nonlinear function of Hammerstein model
G�z� = transfer function of Hammerstein model
u, v, y = Hammerstein model input; scaled intermediate

control value; and model output
VWx, VWy = horizontal components of the atmospheric wind
V0 = vehicle airspeed
xP, yP, zP = inertial position of the vehicle with respect to the

target
α, β = parameters of G�z�
γ = Hammerstein model scaling parameter
δa = nondimensional asymmetric brake input
η, b = linear gain and y offset of approximate static

nonlinear function
μ�� = mean value of ()
ψ , _ψ = inertial heading and heading rate
�̂� = estimate of ()

I. Introduction

P RECISION guided airdrop systems use sensor feedback and
onboard actuators in conjunctionwith guidance, navigation, and

control (GNC) algorithms to actively steer the aerial vehicle to a
desired impact point (IP). This enables higher release altitudes and
improved landing accuracy in comparison to ballistic (unguided)
parachutes. Initial research made use of ram-air inflatable parafoils
and a beacon signal to home toward the IP [1–4]. When military-
grade Global Positioning System (GPS) signal quality was made
available to public and private enterprises, more advanced GNC
schemes were developed, given that position, velocity, and time data
were available for feedback control [5–14].
GNC algorithms are designed to control mathematically derived

dynamic models that predict actual flight characteristics of the

system. Development of these autonomous algorithms requires
extensive system identification in which entire flights are conducted
with open-loop commands chosen to characterize aerodynamic
parameters and control sensitivity mappings. However, parafoil
canopies are severely prone to changes in flight characteristics due to
the very fact that they are high flexible and redeployable systems.
Any deviation from the expected performance increasingly inhibits
the ability of the control algorithm to steer the system to the target
accurately.
To date, relatively little work has been conducted to address the

large-scale deviations parafoil systems can exemplify, such as the

torn canopies shown in Fig. 1. The advantages of in-flight system

identification, particularly vehicle airspeed, were shown to improve

path planning and wind estimation [13,15–17]. Most adaptive

parafoil systems have been directed at coping with variable payload

mass and linear estimation of the control sensitivity [10,14,18,19].

A significantly larger body of research exists, studying adaptive

control methodologies for fixed-wing aircraft [20–22]. However,

these methods are often poorly suited for application to guided

airdrop systems due to relatively short flight durations to learn system

parameters, heavy susceptibility to atmospheric winds, and limited

sensor feedback.
This work presents and analyzes an in-flight system identification

scheme capable of learning the vehicle dynamics between deployment

and landingusing a data-drivenmodeling approach.Thevehiclemodel

identification can be prioritized early when there is excess altitude and

exploited at the end of the flight for accurate landing. Guided airdrop

systems are well matched to this approach because the majority of the

flight can be spent loitering near the target waiting for landing. This

period can bemodified to explore the control sensitivity mappings and

exploit the behavior during the final stages of flight when accuracy is

most important. The proposedmethod represents thevehicle dynamics

using a Hammerstein model that represents the nonlinear system as a

static nonlinear scaling block and linear time-invariant dynamics. This

model captures thegeneral characteristics of a precision airdrop system

in a simple and concise manner, which can be realized rapidly with

minimal computational effort.
This work leverages and modifies a Hammerstein model

identification method originally proposed by Bai [23] to create a
novel adaptive control strategy for hardware implementation on a
guided airdrop system. This dual direct and indirect adaptive control
strategy significantly expands the robustness to failuremodesof parafoil
systems in comparison to current literature. The details of the in-flight
system identification algorithm of a Hammerstein model are presented
in Sec. II. This method is integrated into a GNC algorithm in Sec. III
for robust landing capabilities for a highly uncertain dynamic vehicle.
Section IV provides a description of the simulation model and
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experimental vehicle used to generate results presented in Sec. V.
Conclusions and major findings of the work are discussed in Sec. VI.

II. In-Flight System Identification

In many typical scenarios, the majority of the flight time for a
guided airdrop system is spent homing to and loitering near the target
until the system approaches the ground. This time can be used to
characterize the vehicle system dynamics and control sensitivity.
Fortunately, a significant tracking error can be tolerated at high
altitudes when the system behavior is being learned by the controller.
When the vehicle reaches low altitude, the learnedmodel can provide
high tracking accuracy for precision landing. Additionally, feedback
for guided airdrop systems is typically limited to GPS only, which
places the focus on position control via steady maneuvers due to
limited attitude feedback and velocity control authority. This allows
the system identification algorithm to prioritize characterization of
the steady-state control sensitivity between a lateral input command
and the associated turn rate response.
Flight time, and hence identification time, is capped based on

the release altitude. To accomplish in-flight system identification, a
system model is needed that has sufficient complexity to capture the
dynamic behavior but has a simple enough form to ensure model
convergence over a short period of flight time. For parafoil systems,
the turn rate dynamics can be approximated as linear with minimal
error [24]. However, the control sensitivity is often nonlinear and can
exhibit significant deviations due to damage. The distinct linear and
nonlinear characteristics of a parafoil system are well represented by
the Hammerstein model. The Hammerstein model is a specific type
of nonlinear model that splits the plant into two elements: a linear
time-invariant dynamic block, and a static (or memoryless) nonlinear
block. Figure 2 shows an illustration of the model where an input
vector �u�t� can be scaled or mixed by the static nonlinear mapping
(SNLM) to generate an intermediate, nonlinear control parameter
�v�t�. The intermediate input vector excites the linear time-invariant
dynamics (LTID) to produce the system response �y�t�. As a result, the
goal of the identification process is to characterize the SNLM
function f� �u� and the LTID transfer function matrix �G�z�.
For sufficiently short model identification time, the dynamic

behavior and control sensitivity of the vehicle can be characterized in
flight before final approach of the vehicle to the IP for a fully adaptive
control algorithm.

Many identification methods for Hammerstein models have been

suggested in the literature [25–32]. This work applies the separable

least-squares method proposed by Bai [23] and expanded to the

multiple-input/multiple-output (MIMO) case by Jeng and Huang

[33]. Thismethod separates the identification of the LTID and SNLM

blocks, detailed in Secs. II.A and II.B, respectively. This allows the

dynamics to be realized quickly after canopy inflation, and the

remainder of the flight is devoted to learning the nonlinear control

mapping. The details of thismethod are presented in the following for

the single-input/single-output (SISO) case, although the method can

be extended to the MIMO case with proper accounting for cross-

channel effects [24,33]. For generality, the goal is to characterize the

relationship between an input command u and system response y.

A. Identification of Dynamics

The key to separating the two elements of theHammersteinmodel is

through the use of a pseudorandom binary sequence (PRBS) or a

square wave of changing frequency [23]. A PRBS signal switches

between two values �c for some c ≠ 0 in a deterministic, although

uncorrelated, fashion. As a result of only being excited by two input

levels, the SNLM acts as a static gain, which is visualized in Fig. 3.

During the identification of the dynamics, the true, nonlinear control

mapping is approximated by a linear function with constant gain and

bias. In fact, the linear gain of the SNLM and the gain of the LTID

transfer function are coupled because the system (γG�z�, f�u�∕γ) is
identical for all nonzero values of a scaling factor γ.
During dynamic identification, the linear function PRBS�c�

commands the input between �c, causing the control input to be a

squarewave and the intermediate nonlinear control to be characterized

by linear approximation:

u�k� � PRBS�c� (1)

Fig. 1 Precision airdrop system with ripped a) upper-surface canopy and b) right canopy cells caused by high shock loading during inflation [19].

Fig. 2 Graphic representation of a Hammerstein model. Fig. 3 Linear approximation of an example SNLM under PRBS input.
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v�k� � f�u�k�� ≈ f�PRBS�c�� � �ηc� b (2)

Note that, with additional math, the PRBS value c need not be

symmetrical about zero. As a result of the nonuniqueness of the

Hammerstein model, the linear channel sensitivity η is assumed equal

to one and the scaling parameter γ is chosen autonomously after

realization of G�z� to select a specific solution.
With the PRBS input command, themodel response can be defined

as follows:

y�k� � G�z�v�k� (3)

� G�z�u�k� �G�z�b (4)

where

G�z� � α1z
−1�; : : : ;�αnz

−n

1� β1z
−1�; : : : ;�βnz

−n (5)

The order of the linear dynamics is assumed to be on the order of n
for generality but must be selected by an engineer in advance. After

expanding the differential equation corresponding to Eqs. (3–5), and

solving for the output, it is clear that the constant term b only adds

steady-state offset to the system outputs B:

y�k� � −
Xn
s�1

βsy�k − s� �
Xn
s�1

αsu�k − s� � b
Xn
s�1

αs (6)

y�k� � −
Xn
s�1

βsy�k − s� �
Xn
s�1

αsu�k − s� � B (7)

This can be rewritten in vector form using the data and parameter

vectors: ϕ�k� and θ, respectively. In this form, the parameter vector

can be solved using a least-squares approach, done in real time

through an extended Kalman filter:

y�k� � ϕT�k�θ (8)

ϕ�k� � fu�k − 1�; : : : ; u�k − n�;−y�k − 1�; : : : ;−y�k − n�; 1gT
(9)

θ � fα1; : : : ;αn; β1; : : : ; βn; BgT (10)

The estimated input–output relationship ŷ�k� � ϕT�k�θ̂, given by

Ĝ�z�, can be calculated after sufficient PRBS excitation. Additionally,
the parameter vector is initialized basedon the nominal performance of

the vehicle. The nonuniqueness issue of Hammerstein models is

addressedby selecting thevalue of the scaling parameter γ such that the
gain of the transfer function matrix is unity, pushing all of the linear

scaling into the SNLM:

γ �
P

n
s�1 α̂s

1�P
n
s�1 β̂s

(11)

When Ĝ�z� has unit gain, the steady-state model response directly

tracks the intermediate input. This implies that the intermediate control

parameter represents the desired steady-state response and the SNLM

itself is the control effectiveness from an input command to steady-

state output. At the conclusion of the dynamic identification process,

the LTID block and a linear estimate of the SNLM block are known:

v�k� � f�u�k�� ≈ γ
BP
n
s�1 αs

� γu�k� (12)

B. Identification of Steady-State Control Sensitivity

The goal of this section is to improve upon the initial linear
estimate of the SNLM calculated in Eq. (12) by using real-time input
and output data. This approach does not assume a structure or
parametric model to the SNLM block, which provides the controller
with flexibility to capture damaged, nonlinear control sensitivities,
including asymmetric behavior and dead bands.
Given that the SNLM characterizes control input to steady-state

output, estimation could be conducted by time averaging a series of
constant turns (similar to typical open-loop system identification). This
method estimates the control mapping accurately but very slowly
makes it infeasible for this application. Amore efficient way estimates
the intermediate control signal using the inverse of estimated dynamics
[23,32]. The intermediate control can be estimated by simply using the
inverse of the dynamics: v̂�k� � Ĝ�z�−1y�k�. This enables a
regression on a series of points (u�k�, v̂�k�) for k � 1; : : : ; N to
estimatef�� in either a parametric or nonparametric fashion.However,
without a guarantee, the identified dynamics are minimum phase and
the inverse dynamics may be unstable, prohibiting the estimation of
v̂�k�. Additionally, an inverted dynamic model has lead-compensator
characteristics that amplify themeasurement noise of the output signal.
Another option is available by reframing the problem. The SNLM

represents a static function from commanded input to desired steady-
state output. This time-invariant function can pass through the linear
dynamic model without distortion because the LTID has unity gain.
This identifies the nonlinear mapping associated with the Wiener
model (where the dynamic block precedes the nonlinear function)
and is valid for SISO systems andMIMO systems that are diagonally
dominant. Previously, f�� was estimated by comparing values �u; v�
from Eq. (13). With this modification,G�z� acts as the input first and
f�� can be estimated by studying the data (uF, y), where uF�k� �
G�z�u�k� as in Eq. (14). Figure 4 depicts how this new method
combines the two signals to directly compare parameters at a single
instance of time without having dynamic inversion:

y � G�z�f�u� → G−1�z�y � v � f�u� (13)

y � f�G�z�u� → y � f�uF� (14)

One of the primary benefits of this method is that the SNLM can be
averaged in the parameter domain instead of temporally. Time
averaging is a slowprocess commonlyconducted in flight identification
procedures. Instead, this method logs all data points (uF�k�, y�k�) into
the time-invariant parameter space (uF, y) by accounting for the
dynamic (temporal) response of the system in uF. This is shown in the
SNLM estimate block in Fig. 4, where points are added to this control
authority space. Noise is removed by fitting any parametric or
nonparametric model to estimate the control sensitivity f��. Further
clarification of the method is provided in Sec. III.

III. Adaptive Guidance, Navigation, and Control

At a basic level, the guidance algorithm conducts path planning
based on current state estimates. The navigation algorithm uses GPS
measurements to estimate vehicle position, velocity, heading direction,

Fig. 4 Representation of the method used to estimate the static
nonlinear element of the Hammerstein model.
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and rate in addition to atmospheric winds. The control algorithm acts
upon current state parameters and desired parameters provided by
guidance to steer thevehicle along a desired path. Themodel estimation
and learning of the control sensitivity developed in the last section are
used to improve these algorithms for increased robustness to damage.
For the lateral-only GNC developed here, the assumed form of the

dynamic transfer function that governs the turn rate response of the
Hammerstein model is chosen to be first order (n � 1). An analysis
into higher-order models is difficult due to the level of sensor
noise because it characteristically leads to overfit data or systems
dominated by the first-order pole. Additionally, it is noted that adding
a delay of one regular time update to the first-ordermodel reduces the
rms error between the model and the measured output:

G�z� � αz−2

1 − βz−1
(15)

A. Guidance

The guidance algorithm uses vehicle state and atmospheric
estimates from the navigation algorithm to compute a set of desired
paths to accurately reach the IP. To aid path planning, a wind-based
reference frame (WF) is established (Fig. 5), which is associated with
the drift expected from the influence of the horizontal components of
the atmospheric winds [3,15,34]. Using the wind-based reference
frame is advantageous because it decouples the absolute system
movement into no-wind flight conditions and the drift caused by
atmospheric winds.
The expected wind drift (Δx, Δy) is based upon the integral of the

wind profile and the descent rate from the ground level to the payload
altitude zp. This is approximated using the estimatedmeanwind field
( �VWx, �VWy) and the mean descent rate _zp:

Δx �
�VWxzP
_zP

; Δy �
�VWyzP
_zP

(16)

The orientation of the wind-based reference frame is rotated to
align the î component with the horizontal wind direction:
ψW � tan−1�VWy; VWx�. As a result, guidance planning in this frame
can neglect the influence of the winds because the frame directly
accounts for it.
The path planning is broken into four stages, each with a specific

goal. First, the initialization phase executes a series of open-loop
commands to estimate the linear dynamics (LTID) of theHammerstein
model, the horizontal wind vector, and vehicle airspeed. Second, the
loiter phase maintains proximity near the target and learns the SNLM
control sensitivity mapping. Below an altitude threshold, the approach
phase uses the learned control mapping to steer the vehicle accurately
to the target. Finally, the last stage flares the canopy just before landing
to bleed off forward velocity and prevent the payload from tumbling
after impact.

1. Initialization

The initialization phase commands the PRBS signal to the trailing-
edge brakes, causing the vehicle to execute a series of s turns. The first
turn is held until the vehicle executes over a 180 deg turn, duringwhich
time Eq. (17) can be used to estimate the horizontal atmospheric wind
field using GPS data [17]:

2
6664

_xmP;1 − μ _xP _ymP;1 − μ _yP

..

. ..
.

_xmP;N − μ _xP _ymP;N − μ _yP

3
7775
(
VWx

VWy

)
� 1

2

2
6664
�Vm

1 �2 − μV2

..

.

�Vm
N�2 − μV2

3
7775 (17)

Here, ( _xmP;i, _ymP;i) represent the measured horizontal velocity
components, and �Vm

i �2 is the squared velocity magnitude in the set
i � 1; : : : ; N. Finally, the airspeed of the parafoil and payload system
V0 can be estimated using measured GPS data and horizontal wind
estimates:

V0;i �
����������������������������������������������������������
� _xmi − VWx�2 � � _ymi − VWy�2

q
; V0 � μV0

(18)

Selecting the correct magnitude of the constant input of the PRBS
signal is challenging because the vehicle can be very sensitive or more
unresponsive. The initial turn rate is chosen to be conservative in the
case of a highly sensitive turn rate response and slowly updated based
on filtered gyroscope data, which provide an independent turn rate
measurement. Equation (17) does not depend on the direction of the
turn, however, so only the turn rate magnitude is important. When the
magnitude of the turn rate is between 10 and 25 deg ∕s, the input is
held constant and the atmospheric wind estimation process begins.
These bounds are selected to ensure sufficient lateral excitation but
ensure the system does not enter spiral flight.
After the first s turn of the PRBS is used to conduct the

initialization algorithm, the navigation algorithm can be initialized
using the estimated vehicle airspeed and atmospheric wind estimates.
This defines the vehicle in the wind-based reference frame, and
the remaining s turns are modulated in length to fly in the general
direction of the target using a homing controller. This is not always
effective given the damage to the canopy but, in many degraded
and healthy conditions, this method ensures the vehicle maintains
proximity to the target while conducting system identification. At the
end of the initialization phase, the LTID estimation completes and the
system transitions to the loiter phase.

2. Loiter

During this phase, the parafoil and payload system flies through a
set of figure-eight turns in order to maintain a position relative to the
target. This is accomplished by defining waypoints that are at the tips
of a T-shaped reference line that extends downwind of the IP in the
wind-based reference frame. The T approach was proposed by Jann
[15] and is shown in Fig. 6. The vehicle uses Dubins path planning to
reach the desired waypoints from its current location and heading.
Dubins paths minimize the flight distance with three maneuver
elements: initially turning at a constantmaximum rate in the direction
of the next waypoint; flying straight to approach the waypoint; and,
when near thewaypoint, turning tomatch the desired heading defined
by the waypoint [15,35]. Four potential paths exist: two of which are
shown in Fig. 6. This method is computationally efficient and only
requires accurate knowledge of the control mapping over a subset of
the control space based on the threeDubinsmaneuvers (in the regions
around _ψ � 0,� _ψmax). With a poor estimate of the control mapping
early in the loiter phase, the ability to track these paths is degraded.
However, as the identification algorithm improves the estimate, the
SNLM is well characterized for improved path tracking. Addition-
ally, Dubins pathing can be expanded to include the transition
between straight flight and the maximum turn rate by using the
settling time of the identified dynamics to account for very slow
systems [24].
During the entire loitering period, the altitude required to reach the

target from the current location is computed. This is calculated in

Fig. 5 Visual representation of the wind-based reference frame.

1028 CACAN AND COSTELLO

D
ow

nl
oa

de
d 

by
 G

E
O

R
G

IA
 I

N
ST

 O
F 

T
E

C
H

N
O

L
O

G
Y

 o
n 

Ju
ly

 1
1,

 2
01

9 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.G

00
30

39
 



Eq. (19) using the Dubins path length to the target LDubins and the

estimated glideslope, V0∕_zp:

hREQ � LDubins

_zp
V0

(19)

When the current altitude equalshREQ, the system switches into the

approach phase.

3. Approach and Flare

Thevehicle enters approachwhen the guidance algorithmcalculates

that it will reach the target at the same time the system lands. The

vehicle deviates from the figure-eight holding pattern and attempts to

fly upwind toward the target along the stem of the T. Based on the

nature of the WF, this ensures the vehicle is approaching the target

facing into the wind to reduce ground speed. When the vehicle is

several meters above ground level, the vehicle enters the final stage

where the vehicle is commanded to enter straight and level flight. Just

before impact, full symmetric brakes are applied to flare the canopy

into prestall conditions, which further decreases the forward airspeed

andminimizes the potential for the payload to roll after ground impact.

B. Navigation

For guided parafoil and payload systems, the important states to

estimate are the atmospheric winds and vehicle position, the velocity,

the heading angle, and the rate (x, y, z, ψ , _ψ , V0, VWx, VWy). After the

open-loop initialization procedure [Eqs. (17) and (18)] generates an

initial estimate of these parameters, the navigation algorithm uses the

GPS to propagate them forward in time using an extended Kalman
filter. The details are excluded here for brevity but have been published
previously by Cacan et al. [24,36].

C. Control

This adaptive controller improves over conventional controllers that
depend on a priori control mappings with an algorithm that focuses on
the exploration (during loiter) and exploitation (during approach) of
the Hammerstein model. Using the data-driven approach presented in
Sec. II.B, the relationship between the asymmetric brake control input
and turn rate response can be estimated. The SNLM directly estimates
the control mapping of the vehicle, which is approximated using a
dynamic lookup table to minimize the constraints on the form of the
SNLM estimate. This is represented graphically by a continuous,
piecewise linear function.
An illustration of how the SNLM updates due to exploration of a

newcontrol space is depicted inFig. 7. Immediately after Initialization,
the SNLMestimate is the linear approximation as shown in Fig. 7a. If,
as shown, theguidance algorithmcommands a right turn at amaximum
turn rate, the controller will use the linear approximation to select the
nondimensional input δac, which actually induces a greater turn rate
response _ψm. The estimator uses the data points (δac, _ψm) toupdate the
SNLM, causing the control level to decrease until the measured value
equals the commanded, as shown in Fig. 7b. The entire control space
can be explored and learned quickly because the guidance strategy
selects from three path options (turn left, right, or straight), which
significantly reduces the control space that has to bewell characterized.
Further details on this identification are presented in Sec. V.
With continuously improving estimates of the SNLM, the common

control strategy forHammerstein systems is to cancel out the effects of
the SNLM and control the linear dynamic systemG�z� [37–39]. This
strategy is presented inFig. 8 and implemented here to track the desired
heading rate that is commanded from the guidance algorithm.
However, it is important to note that the SNLMestimate cannot blindly
be inverted to generate a valid control mapping. It is assumed that the
turn rate is a function of the input (in the sense that there is one output
for a given input), which enables parameterization of the mapping, but
the inverse is not guaranteed due to potential nonlinear behavior. This
is resolved by using a map handler that places a dead band across any
local nonmonotonic behavior so that the inverse mapping is a proper
function. This causes a discontinuity in the control sensitivity block
f̂−1MH, such that no values in this rangewill be commanded to δac. This
simplyand effectively creates a globallymonotonicmapping, although
turn rate errors (hence pathing errors) can occur when the actuator is
required to pass through these ranges. An analysis indicated that this
deadband behavior only significantly impacted landing accuracywhen
the deadpan crossed _ψ � 0. Additional information is available
in [24].

IV. Experimental Vehicle and Simulation Model

Figure 9a shows the experimental vehicle in flight. This small-
scale remote-controlled vehicle was designed to provide an efficient

Fig. 6 Visualization of Dubins path planning transitioning from the left
waypoint to the right.

Fig. 7 Illustration of how SNLM updates when exploring a new portion of the control space, given that t�a� < t�b�.
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alternative to full-size airdrop system testing, which required guided
payloads to be dropped from manned aircraft. The 1.35 m2 parafoil
canopy supported a 2.7 kg payload equipped with an autopilot, a GPS
antenna, servo motors, an electric brushless motor, a speed controller,
and a battery. Additionally, a small coin cell-powered wireless
microelectromechanical system inertial measurement unit was located
in the canopy to provide heading rate feedback to insure the initial
response under the PRBS signal was within response bounds (only the
course rate was available from GPS directly). The autopilot used a
PIC32MX-family microcontroller with a clock speed of 80 MHz to
handle wireless communications (4 Hz), sensor measurements (16 Hz),
and GNC calculations (4 Hz). The vehicle was actuated via two high-
torque servomotors,which enabled lateral control of thevehicle through
trailing-edge deflection of the canopy.
Figure 9b depicts a schematic of a parafoil and payload system used

for dynamic modeling of the vehicle. With the exception of movable
parafoil brakes, the parafoil canopy is considered to be a fixed shape.
The combined system of the parafoil canopy and the payload are
represented by a six-degree-of-freedom rigid-body model, defined by
three inertial position components of the total system mass center as
well as the three Euler orientation angles. The canopy aerodynamic
forces and moments are computed using the wind relative velocity ~V
at the canopy aerodynamic center (point C in Fig. 9b). The
transformation from the body frame (frame B in Fig. 9b) located at the
vehicle center of mass to the canopy reference frame (frame C in
Fig. 9b) is defined by a single axis rotation in pitch by the canopy
incidence angle Γ. The equations of motion for this six-degree-of-
freedom parafoil and payload representation have been derived
previously and validated through flight testing [17,24,34,40,41].
Atmospheric winds are captured in the simulation model through

low-frequency altitude-dependent variations and high-frequency

turbulence, as shown in Fig. 10. Low-frequency variation is used to
introduce horizontal wind shears, which are commonly observed in
experimental testing and can significantly degrade landing accuracy
[42]. High-frequency wind gusts are captured using a discrete
implementation of the Dryden turbulence model [43,44]. In a simple
and concise manner, this wind model captures the nature of
atmospheric wind fields close to the ground. By statistically varying
the upper and lower air mass velocities, the shear altitude, and the gust
noise, a rich variety of physical scenarios can be constructed.

V. Results

The performance and capabilities of the proposed adaptive GNC
are presented for both simulation and experimental results. As a
comparison, two additional GNCs that represent industry standard
airdrop GNC strategies are considered. Both use identical navigation
and guidance algorithms, except that the initialization phase ends
after wind estimates are computed because the LTID identification is
removed. The control algorithms, however, are significantly less
adaptive. The conventional algorithm uses a proportional–integral
(PI) controller to steer the vehicle and requires a priori knowledge of
the control sensitivity mapping [13,34]. The integral component is
used to estimate and reject steady-state turn bias. In total, this GNC
can estimate and adapt to the atmosphericwinds, thevehicle airspeed,
and the turn rate biases. The second algorithm uses a model reference
adaptive controller (MRAC), which can estimate both the linear
control sensitivity and bias. The user-defined reference model is
assumed to take the following form:

δac � f� _ψc� ≈ δaGain _ψc � δabias (20)

Fig. 8 Block diagram representation of the control strategy used in the hyperadaptive GNC.

Fig. 9 Precision airdrop system a) in flight and b) as a schematic for dynamic modeling.
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where δaGain and δabias are the control gain and bias, respectively.
These parameters are updated at every time step based on the error
between the measured turn rate _ψm and the desired turn rate based on
the reference model _ψd:

dδaGain
dt

� −γ1 _ψc� _ψm − _ψd� (21)

dδabias
dt

� −γ2� _ψm − _ψd� (22)

Here, the γ terms are tuning parameters to be selected offline.
To clarify between the flight controllers, the proposed adaptive

algorithm is termed the hyperadaptive GNC and is compared against
the conventional and MRAC algorithms.

A. Simulated Example Autonomous Flight

To understand the capabilities of each algorithm, an example
damaged flight condition is tested in a simulation environment where
the control sensitivity to turn left is greatly reduced. This damage case
generally characterizes degraded conditions that only significantly
impact one side of the canopy, such as actuator malfunction or canopy
damage.
The guided airdrop system is released from a 500 m altitude and is

located upwind of the target, following standard industry practice as

Fig. 10 Simulated wind field showing the base model (dashed) and included atmospheric turbulence (solid).

Fig. 11 Simulated a) horizontal trajectory, b) LTID parameter estimate during initialization, and c) turn rate time history of the hyperadaptive GNC
steering a vehicle with asymmetric turn rate response.
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shown in Fig. 11a. From t � 0 → 6 s, the initial turn rate response to
the commanded input is corrected to be within bounds (it steps up
once). At this point, the initialization and LTID algorithms both
begin. Using the initialization algorithms, the airspeed of 7.2 m∕s is

estimated with less than a 5% error and the LTID estimation algorithm
accurately characterizes the lateral turn rate dynamics during the PRBS
input sequence from t � 6 s to t � 58 s. Before t � 36 s, the single
control point does not provide sufficient observability to estimate
parameters, causing their values to drift as seen in Fig. 11b. After the
second, third, and fourth turns, the system is sufficiently excited to
estimate the key LTID parameter β to within 2%. The values of the
linear mapping accurately approximate the damaged control mapping
at the PRBS command points, as can be seen in Fig. 12. Additionally,
the final estimate of the Hammerstein model is plotted in Fig. 11c and
shows close agreement with the measured response.
After initialization, the system enters loiter and conducts the figure

8 loiter pattern to maintain proximity to the target (seen slanted in
Fig. 11a due to the wind). The time period from approximately
t � 60 s to t � 130 s is used to update the SNLM on the side of
positive control authority. This shifts the estimate of the SNLMdown
from the linear estimate to align with the measured response. When
the vehicle first commands a maximum rate left turn at t ≈ 130 s, a
significant tracking error populates the SNLM estimator with points
in the region of �δa; _ψ� � �−.4;−10� in Fig. 12. The SNLMestimate
is able to update to match the true turn rate sensitivity in
approximately 10 s. At the conclusion of the flight, the final SNLM
estimate shows a strong match to the true damaged control mapping.
The ability to track the desired turn rate after t ≈ 170 s enables the
system to land less than 10 m from the target.
In comparison, the results of the MRAC estimation of the same

control sensitivity mapping are presented in Fig. 13. The linear
approximation of the asymmetric control mapping results in slow
turns to the left and a turn that is too sharp to the right. The inability to
track the desired turn rates defined by the Dubins paths causes the
system to land over 90 m from the target. Finally, the conventional
GNC also has significant problems handling this type of error. The PI
controller can only account for the turn rate error by varying the turn
rate bias to match only the current point. After a short series of turns,
the control increases, causing the system to enter an undesirable
spiral flight.

B. Simulated Monte Carlo Analysis

The three GNC algorithms are stress tested by randomly varying a
set of parameters that alters flight performance of the vehicle. This
includes the canopy incidence angle, which controls airspeed and
descent rate; asymmetric scaling, dead bands, and control reversals of
the control mapping; an actuator time constant, which changes the
settling time of the turn rate dynamics; and atmospheric winds.
Landing dispersions for the conventional,MRAC, and hyperadaptive
algorithms controlling a highly uncertain precision payload system
are presented in Fig. 14. Conventional, MRAC, and hyperadaptive
simulation results indicate the algorithms have 50% CEPs of 74.6,
34.5, and 27.9 m, respectively, which show a threefold improvement
in the hyperadaptive GNC over the conventional GNC. Table 1
presents the landing statistics for both the nominal and highly

Fig. 12 Initial and final SNLM estimates for a vehicle with asymmetric
turn rate response.

Fig. 13 Control mapping estimated by the MRAC GNC.

Fig. 14 Monte Carlo landing dispersions of three adaptive GNC algorithms tested on a vehicle with highly uncertain dynamics.

1032 CACAN AND COSTELLO

D
ow

nl
oa

de
d 

by
 G

E
O

R
G

IA
 I

N
ST

 O
F 

T
E

C
H

N
O

L
O

G
Y

 o
n 

Ju
ly

 1
1,

 2
01

9 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.G

00
30

39
 



uncertain vehicle configurations in the presence of realistic wind

fields. The conventional GNC experiences a 288% rise in 50%

circular error probable (CEP) and an over 400% increase in 90%CEP

when the uncertainty is introduced to the vehicle. The linear turn rate

sensitivity adaption of the MRAC GNC reduces the effect of

uncertainty but still exhibits a 100% decrease in landing accuracy for

both landing metrics. Finally, the hyperadaptive GNC is the most

robust to themodel uncertainty,with increases of only 41 and 33% for

the 50 and 90% CEPs, respectively.
Not included in the previous Monte Carlo analysis is the case of

control reversal. Most adaptive control algorithms including the

MRACcontroller assume the sign of the control authority is known to

update parameters in the correct direction. However, the flexible

nature of the proposed hyperadaptive algorithm allows for the

identification of a control reversal during the dynamics estimation. If

the dynamic response is flipped from the input, the gain of the transfer

function is negative, which causes the linear approximation of the

SNLM to also be reversed. When the previous study is repeated with

only the control reversal and atmospheric winds, the hyperadaptive

algorithm is able to maintain nominal landing accuracy. The

conventional and MRAC GNC algorithms, however, experience

2500 and 900% increases, respectively, over their nominal accuracy

due to destabilization of the controller.

C. Experimental Flight Tests

The final validation of the adaptive GNC was through

experimental flight testing in a real-world environment. In addition

to the nominal vehicle configuration, softwaremodifications external

to the GNC were used to implement a control reversal, asymmetric

control sensitivity, and decreased actuator speed. These tests changed

both the control sensitivity mapping and the turn rate dynamics to

accurately gauge the algorithm’s ability to handle a large range of

model uncertainty. A fifth test loaded identical software onto a

second small-scale parafoil and payload system. This second vehicle

had a different payload mass and shortened servo actuation arms to

reduce the control sensitivity, and the canopy was smaller and poorly
rigged, resulting in a strong turn bias. The conventional algorithm
was flown concurrently, but only on the nominal system as a baseline,
and to account for variable atmospheric conditions.
Flight testing was conducted south of Atlanta, Georgia in a large

wooded clearing across all times of the day to test the algorithms in
typically calmmorningwinds andmore turbulent afternoonconditions.
The results of 51 flights across all case studies are presented in Fig. 15a,
with individual landing metrics listed in Table 2. Aggregate results of
the hyperadaptive GNC indicate a 50%CEP of 35.9m and a 90%CEP
of 69.0 m. This aligns well with the multiparameter simulation testing,
which has 50 and 90% CEPs of 27.9 and 76.7 m, respectively. Part of
the variation seen between landing results in Table 2 is due to relatively
few sample points not fully capturing the full range of atmospheric
wind fields. However, the slow actuator case is expected to degrade
performance because the rate limiting of the actuator makes the vehicle
less maneuverable, and hence less agile to reject error.
As a reference, the conventionalGNCcontrolling only the nominal

system has 50 and 90% CEPs of 27.3 and 48.6 m, respectively. The
hyperadaptive algorithm is capable of achieving nearly equivalent
landing accuracy in the face of large variations in vehicle flight
performance. Under similar circumstances, the conventional control
algorithm would have damaged the payload and experienced
significant increase in landing error, as shown by the simulation
results.

VI. Conclusions

An adaptive guidance, navigation, and control algorithm for
precision guided airdrop systems was developed to overcome highly
uncertain flight characteristics. At its core was a model identification
algorithm that fully characterized the vehicle turn rate dynamics and
control sensitivitymapping during the course of a single flight. A data-
driven nonparametric approach tomodeling the control sensitivitywas
used to handle a wide array of damage. Extensive simulation results
and flight-test data showed that the proposed adaptiveGNCwas robust
to all forms of model uncertainty commonly experienced in practice.
Minimal to no loss of landing accuracy was noted for changes in
atmospheric winds, vehicle airspeed, turn rate biases, actuator speed,
and many linear and nonlinear changes to the control sensitivity
mapping, including nonmonotonic and deadband behaviors. As a

Fig. 15 Experimental landing results of the a) hyperadaptive GNC and b) conventional GNC algorithms.

Table 2 Experimental flight test results for the hyperadaptive
algorithm

Vehicle configuration Number of flights 50% CEP 90% CEP

Nominal 11 21.2 m 66.3 m
Control reversal 11 44.4 m 55.8 m
Asymmetric control sensitivity 9 42.4 m 63.4 m
Slow actuators 11 59.5 m 90.0 m
Second vehicle 9 21.5 m 43.0 m
Combined 51 35.9 m 69.0 m

Table 1 Landing statistics for the multi-parameter Monte Carlo
simulation

GNC algorithm
50%
CEP

Change vs
nominal

90%
CEP

Change vs
nominal

Conventional
(nominal)

19.2 m — — 50.9 m — —

MRAC (nominal) 17.4 m — — 51.9 m — —

Hyperadaptive
(nominal)

19.8 m — — 57.7 m — —

Conventional
(damaged)

74.6 m ↑ 288% 163.59 m ↑ 410%

MRAC (damaged) 34.5 m ↑ 98% 100.2 m ↑ 93%
Hyperadaptive
(damaged)

27.9 m ↑ 41% 76.7 m ↑ 33%
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comparison, two GNC algorithms based on currently fielded flight
software were studied. Both algorithms performed equivalently for
small levels of damage, including changes to the vehicle airspeed or
turn rate biases. However, nonlinear control sensitivity and control
reversals posed a significant error and caused over an order of
magnitude decrease in landing accuracy.
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